Index ← Previous Next →

Circles: Book 3 Proposition 13

Translations

Κύκλος κύκλου οὐκ ἐφάπτεται κατὰ πλείονα σημεῖα ἢ καθ' ἕν, ἐάν τε ἐντὸς ἐάν τε ἐκτὸς ἐφάπτηται. Εἰ γὰρ δυνατόν, κύκλος ὁ ΑΒΓΔ κύκλου τοῦ ΕΒΖΔ ἐφαπτέσθω πρότερον ἐντὸς κατὰ πλείονα σημεῖα ἢ ἓν τὰ Δ, Β. Καὶ εἰλήφθω τοῦ μὲν ΑΒΓΔ κύκλου κέντρον τὸ Η, τοῦ δὲ ΕΒΖΔ τὸ Θ. Ἡ ἄρα ἀπὸ τοῦ Η ἐπὶ τὸ Θ ἐπιζευγνυμένη ἐπὶ τὰ Β, Δ πεσεῖται. πιπτέτω ὡς ἡ ΒΗΘΔ. καὶ ἐπεὶ τὸ Η σημεῖον κέντρον ἐστὶ τοῦ ΑΒΓΔ κύκλου, ἴση ἐστὶν ἡ ΒΗ τῇ ΗΔ: μείζων ἄρα ἡ ΒΗ τῆς ΘΔ: πολλῷ ἄρα μείζων ἡ ΒΘ τῆς ΘΔ. πάλιν, ἐπεὶ τὸ Θ σημεῖον κέντρον ἐστὶ τοῦ ΕΒΖΔ κύκλου, ἴση ἐστὶν ἡ ΒΘ τῇ ΘΔ: ἐδείχθη δὲ αὐτῆς καὶ πολλῷ μείζων: ὅπερ ἀδύνατον: οὐκ ἄρα κύκλος κύκλου ἐφάπτεται ἐντὸς κατὰ πλείονα σημεῖα ἢ ἕν. Λέγω δή, ὅτι οὐδὲ ἐκτός. Εἰ γὰρ δυνατόν, κύκλος ὁ ΑΓΚ κύκλου τοῦ ΑΒΓΔ ἐφαπτέσθω ἐκτὸς κατὰ πλείονα σημεῖα ἢ ἓν τὰ Α, Γ, καὶ ἐπεζεύχθω ἡ ΑΓ. Ἐπεὶ οὖν κύκλων τῶν ΑΒΓΔ, ΑΓΚ εἴληπται ἐπὶ τῆς περιφερείας ἑκατέρου δύο τυχόντα σημεῖα τὰ Α, Γ, ἡ ἐπὶ τὰ σημεῖα ἐπιζευγνυμένη εὐθεῖα ἐντὸς ἑκατέρου πεσεῖται: ἀλλὰ τοῦ μὲν ΑΒΓΔ ἐντὸς ἔπεσεν, τοῦ δὲ ΑΓΚ ἐκτός: ὅπερ ἄτοπον: οὐκ ἄρα κύκλος κύκλου ἐφάπτεται ἐκτὸς κατὰ πλείονα σημεῖα ἢ ἕν. ἐδείχθη δέ, ὅτι οὐδὲ ἐντός. Κύκλος ἄρα κύκλου οὐκ ἐφάπτεται κατὰ πλείονα σημεῖα ἢ [καθ'] ἕν, ἐάν τε ἐντὸς ἐάν τε ἐκτὸς ἐφάπτηται: ὅπερ ἔδει δεῖξαι.

A circle does not touch a circle at more points than one, whether it touch it internally or externally. For, if possible, let the circle ABDC touch the circle EBFD, first internally, at more points than one, namely D, B. Let the centre G of the circle ABDC, and the centre H of EBFD, be taken. Therefore the straight line joined from G to H will fall on B, D. [III. 11] Let it so fall, as BGHD. Then, since the point G is the centre of the circle ABCD, BG is equal to GD; therefore BG is greater than HD; therefore BH is much greater than HD. Again, since the point H is the centre of the circle EBFD, BH is equal to HD; but it was also proved much greater than it: which is impossible. Therefore a circle does not touch a circle internally at more points than one. I say further that neither does it so touch it externally. For, if possible, let the circle ACK touch the circle ABDC at more points than one, namely A, C, and let AC be joined. Then, since on the circumference of each of the circles ABDC, ACK two points A, C have been taken at random, the straight line joining the points will fall within each circle; [III. 2] but it fell within the circle ABCD and outside ACK [III. Def. 3]: which is absurd. Therefore a circle does not touch a circle externally at more points than one. And it was proved that neither does it so touch it internally.